52. Stereoselective Conversion of Campholene- to Necrodane-Type Monoterpenes. Novel Access to $(-)$ - (R,R) - and (R,S) - α -Necrodol and the **Enantiomeric** *y* **-Necrodols**

by **Herv6 Pamingle, Roger L. Snowden,** and **Karl H. Schulte-Elk***

Firmenich SA, Research Laboratories, CH-1211 Geneva **8**

(19.11.91)

Naturally occurring $(-)$ - (R, R) - α -necrodol $((-)$ -1) and its C(4)-epimer $(-)$ -2 are obtained in 84 and 44% yields, respectively, by lithium ethylenediamide (LEDA) treatment of the corresponding β -necrodols $(-)$ -3 and **(-)-4** *(Scheme I, Table),* both readily available from (-)-campholenyl acetate **((-)-i)** by an efficient stereoselective synthesis. The thermodynamically preferred $(-)$ - (R) -y-necrodol $((-)$ -5) becomes the major product ($\geq 80\%$ yield) after either prolonged treatment with LEDA or exposure of α - and β -necrodols to BF₃. Et₂O. In an alternative route, $(+)$ -5 is prepared starting from $(+)$ -campholenal $((+)$ -ii) *via* Pd-catalysed decarbonylation to $(-)$ - (S) -1,4,5,5 $tetramethylcyclopent-1-ene $((-)-6)$ and subsequent application of an acid-catalysed CH₂O-addition/rearrange$ ment sequence *(Scheme* 2).

Introduction. - Belonging to a new group of monoterpenoid alcohols [11, the isomeric necrodols **1-5** have received much attention as preparatively challenging target molecules *[2]* due to their intriguing non-isoprenoid structures and their remarkable insect-repellant activities.

¹) Structural correlations of $(-)$ -i and $(+)$ -ii with $(-)$ - α -pinene as well as their natural occurrence have been reported in **[3].**

The two naturally occurring isomers $(-)$ -1 and $(-)$ -3²) have especially been the subject of intensive synthetic studies *[2]* [4]. Recently, we have disclosed an efficient synthesis of **(-)-3** by applying a stereoselective *Prinslretro-Prins* -rearrangement sequence *[5]* starting from $(-)$ -campholenyl acetate $((-)$ -i). In contrast, the reported routes to the corresponding α - and γ -isomers (-)-1, (-)-2, (-)-5, and (+)-5 are multistep, low-yielding processes [2]. As an improved approach to α - and γ -necrodols, we now report the C=C bond isomerisation of the epimeric β -isomers $(-)$ -3 and $(-)$ -4. In addition, we describe a novel access to *(+)-5* by extension of the *Prins* methodology *[5]* to the cyclopentene *(-)-6,* itself readily available from (+)-campholenal **((+)-ii)** by Pd/C-catalysed decarbonylation [6].

Results. -1 . α - and γ -Necrodols by $C = C$ Bond Isomerisation of β -Necrodols. Previous attempts [2] to transform $(-)$ -3 and $(-)$ -4 into $(-)$ -1, $(-)$ -2, and $(-)$ -5 using transition metal catalysed $C=C$ bond isomerisation have generally been unsuccessful. We, therefore, turned to more classical conditions and found that lithium ethylenediamide (LEDA) in ethylenediamine *(Condition a [7])* and BF, . Et,O in Et,O *(Condition b)* were both highly efficient for this purpose. Thus, **(-)-3** and **(-)-4** were readily transformed into the

Table. *LEDA- and BF₃: Et₂O-Catalysed Isomerisation of* $(-)$ *-* β *-Necrodol (* $(-)$ *-3) and its Epimer* $(-)$ *-4* (see *Scheme 1*): *Formation of Natural* $(-)$ - α -Necrodol $((-)-1)$, *its Epimer* $(-)$ -2, *and* $(-)$ - γ -Necrodol($(-)-5$)

Entry	Starting material	a,	Condition Reaction time	Yield (dist.)	Product distributions [%]				
					starting material	$(-)$ -1	$(-) - 2$	$(-) - 5$	un- known
1	$(-) -3$	\boldsymbol{a}	$8-10$ min	92%	0.5	84		14	1.5
\overline{c}	$(-) -3$	a	15 h	90%	0.1	8	$-$	90	1.9
3	$(-) - 3$	b	15 h	80%	0.1	0.1	$\overline{}$	97	2.8
$\overline{4}$	$(-) - 4$	a	$8-10$ min	95%	2.5		44	52	1.5
5	$(-) - 4$	a	15 _h	90%			2	95	\mathfrak{D}
6	$(-) - 4$	b	15 h	80%	0.8		0.2	97	\mathfrak{D}

^a) *Condition a:* Li/NH₂CH₂CH₂NH₂ (ca. 1:20; ca. 6 mol-equiv. of LiNHCH₂CH₂NH₂); 70°. *Condition h:* $BF_3 \cdot Et_2O/Et_2O$ *(ca.* 1:20; *ca.* 0.1 mol-equiv. of $BF_3 \cdot Et_2O$); 20°.

a) b) See *Footnote* a in the *Table.*

') Both **(-)-I** and *(-)-3* have been isolated from the defence spray of the carrion beetle by *Meinwald* and coworkers [l] and characterised by enantiospecific syntheses [2]. They may be regarded as plant terpene metabolites originating from lavandulol structures [2].

corresponding endocyclic double-bond isomers, the final position of the $C=C$ bond depending on whether basic or acidic conditions were employed (see Table and Scheme *I).* Careful GC analysis of the isomerisation of **(-)-3** and **(-)-4** revealed that LEDA isomerises the C=C bond into both the α - and γ -positions, the product distributions being both substrate- and time-dependent; in contrast, $BF_i \cdot Et_2O$ led to exclusive formation of $(-)$ -5 without the intermediate appearance of $(-)$ -1 and $(-)$ -2.

Thus, treatment of $(-)$ -3 or $(-)$ -4 with a freshly prepared solution of lithium (6) mol-equiv.) in ethylenediamine at 70° (see Table, Entries 1 and 4) resulted in the complete disappearance of the starting material after 8-10 min and clean formation of mixtures of isomeric alcohols in over 90% yield. The mixture obtained from $(-)$ -3 contained $(-)$ -1 (84%) and **(-)-5** (14%), whilst that formed from **(-)-4** consisted of **(-)-2** (44%) and **(-)-5** (52 *YO).* Prolongation of the LEDA treatment resulted in further transformation of **(-)-1** and **(-)-2,** leading in both cases, after 15 h, to **(-)-5** as the final product (Entries 2 and 5). On the other hand, exposure of $(-)$ -3 or $(-)$ -4 to BF₃. Et₂O (0.1 mol-equiv.) in Et,O at 20° (*Entries 3* and 6) resulted in almost complete conversion to $(-)$ -5 after 15 h. The final product (80–85% yield after distillation) contained less than 1–3% of starting materials and some unidentified by-products.

For structural characterisation, the individual necrodols were isolated by chromatography. The identities of $(-)$ -1, $(-)$ -2, and $(-)$ -5 were confirmed by spectral comparison with authentic samples [2]. Because no racemisation is expected during their formation, these products are thus assumed to have the same optical purity as $(-)$ -3 and (-)-4 (ca. 94% ee)³).

Mechanistically, the markedly different pathways of the $C=C$ bond isomerisations of **(-)-3** and **(-)-4** are rationalised by the inherently different reaction behaviours of the two catalysts utilised. The fact that LEDA initiates C=C bond isomerisation by allylic deprotonation [7] indicates that the small amount of $(-)$ -5 (14%) formed from $(-)$ -3 (*Entry 1*) may have its origin in the low steric accessibility of $H-C(3)$ due to the cis-oriented CH,OH-C(1). In contrast, for $(-)$ -4, in which H-C(3) is as readily accessible as H-C(5), both isomerisation products **(-)-2** and **(-)-5** are formed in comparable amounts. These steric arguments may be used to explain the distinctly slower reaction rate for the transformations $(-)-3 \rightarrow (-)-1 \rightarrow (-)-5$ in comparison with $(-)-4 \rightarrow (-) 2\rightarrow (-)$ -5 (see *Table*).

On the other hand, BF_i Et₁O, which effects isomerisation by prior electrophilic interaction with the $C=C$ bond, is less sensitive to steric constraints. The exclusive and direct formation of **(-)-5** from both **(-)-3** and **(-)-4** (Entries *3* and 6) may be, therefore, due to the thermodynamically preferred tetrasubstituted position of the C=C bond. In agreement with this hypothesis is the fact that these C=C bond isomerisations were found to be irreversible under these conditions.

2. (+)-y-Necrodol((+)-5) *from* Campholenal **((+)-ii).** With the aim of synthesizing the enantiomer $(+)$ -5 of y-necrodol⁴) for comparative organoleptic experiments, the approach depicted in Scheme 2 was adopted. On Pd-catalysed decarbonylation of the

³) We found the following optical rotations in CHCl₃: (-)-1, $[\alpha]_D^{20} = -129.7$; (-)-2, $[\alpha]_D^{20} = -49.9$; (-)-5, $[\alpha]_D^{20} = -21.2$. Previously reported values [2]: $(-)$ - (R, R) -1, $[\alpha]_D^{20} = -76.5$; $(+)$ - (S, R) -2, $[\alpha]_D^{20} = +24.5$, $(+)$ - (S) -5, $[\alpha]_D^{20}$ = +15.1 (CHCl₃).

Enantiomer *(+)-5* was first obtained by *Meinwald* and coworkers [2b] in connection with synthetic work directed towards $(+)$ -1 and $(+)$ -3 starting from $(-)$ -bornyl acetate. **4,**

a) **5%** Pd/C, 180-200°. *b)* Paraformaldehyde, BF,.Et,O, AqO, CH,CI,, *0".* c) LiAlH,, Et,O. *d)* BF,.Et,O, toluene, 15 h.

readily available $(+)$ -campholenal $((+)$ -ii; ee ca. $94\%)$ ¹), $(-)$ -1,4,5,5-tetramethylcyclopent-1-ene $((-)-6)$ was obtained in 77% yield [6]. Prins-Blomquist conditions $(CH_2O,$ Ac,O, BF,. Et,O [S]) then led stereoselectively to the formation of trans-acetate **(+)-7a** as the sole primary reaction product without detectable traces of its cis-stereoisomer (GC limits $\leq 1\%$ ⁵). If equimolar quantities of starting materials were used and the reaction was then quenched by hydrolysis after ca. 90% conversion of $(-)$ -6 (GC control), the isolated yield of **(+)-7a** was 40%. Under these conditions, only **(+)-5a** (ca. *5%)* and bicyclic ether **(+)-8** (10%) were formed as detectable by-products. Prolongation of the reaction time caused further rearrangement of **(+)-7a** to **(+)-5a,** but also led to increased formation of unidentified by-products. Best yields of **(+)-5a** (ca. **73** %) were obtained by separate treatment of $(+)$ -7a with BF₃. Et₅O in toluene at 20^o.

As expected, increased formation of ether **(+)-8** was observed by using an excess of paraformaldehyde and may become, if desired, the major product. **A** plausible mechanism is presented in *Scheme 3*. Thus, a BF_3 . OCH₂ complex initially adds to the C=C bond in **(+)-7a** with concomitant 1,2-Me-shift and proton loss to give intermediate **iii,** which then eliminates AcOH to form ether **(+)-8.**

Organoleptic Properties. - Sensory evaluation of the isomeric *a* - and *y* -necrodols **1-5** revealed in all cases weak odour profiles with predominant camphoraceous-herbal-like

^{&#}x27;) This reaction behaviour of *(-)-6* is identical to that previously observed for **(-)-i** *[5]*

notes. In addition, no significant odour difference was discerned between optical antipodes.

Experimental Part

General. See [5].

Starting Materials. Preparation of the isomeric β -necrodols (-)-3 $((\alpha)^{20} = -17.85$ *(c = 1.68, CHCl₁)*) and $(-) -4$ $[$ a $]_0^{20} = -81.7$ $(c = 1.2, CHCl_1)$ and of $(+)$ -campholenal $((+)$ -ii; $[\alpha]_0^{20} = +9.6$ (neat); enantiomeric excess *ca*. 94%) as described previously *[5].*

1. *LEDA-CatalysedIsomerisationof (-)-3and(-)-4.* 1.1. (-)-1 *and* **(-)-S** *from* (-)-3. Alcohol(-)-3(1.8 g, 11.7 mmol) was added to a freshly prepared soh. of Li (0.485 g, 69 mmol) in ethylenediamine (10.8 ml) [7] heated at 70" until the disappearance of *(-)-3 (i.e.* 8-10 min (GC control); *Condition a),* then poured onto ice, extracted with Et₂O, washed with sat. aq. NH₄Cl soln. and with brine to neutrality, dried (Na₂SO₄), evaporated, and purified by bulb-to-bulb distillation (oven temp. 130°/3 Torr): 1.65 g (92%) of colourless oil, consisting of $(-)$ -3 (0.5%), $(-)$ -1(84%), $(-)$ -5(14%), and unknown products (1.5%; GC). LEDA treatment of $(-)$ -3 for 15 h led to a mixture (90% yield) of **(-)-3** (0.1 %), **(-)-1(8** %), **(-)-S** (90%), and unknown components (1.9% GC). Separation by prep. GC (5-m *Carbowax* column) gave pure $(-)$ -1 followed by pure $(-)$ -5.

(-)-(I R.4R)-3,4.5,5-Tetramethylcyclopent-2-ene-l-methanol **((-)-1).** *[a]g* = -129.7 *(c* = 1.1, CHCI,). IR: 3600, 2900, 1460, 1370, 1060, 1000, 850. 'H-NMR: 0.88 *(d, J* = 7.2, 3 H); 0.92 **(s,** 3 **H);** 1.00 **(s,** 3 H); 1.64 *(d,* $J=1.5$, 3 H); 2.19 (q, $J=7.2$, 1 H); 2.30 (m, 1 H); 3.59 (ABX, $J=5.4$, 10.5, $\Delta=21$, 2 H); 5.25 (br. s, 1 H). I3C-NMR: 145.8 **(s);** 123.3 *(d);* 63.2 *(t);* 56.5 *(d);* 52.3 *(d);* 43.0(s); 25.0 (y); 23.6 *(4);* 15.2 *(4);* 12.0 *(4).* **MS:** 154(7, *M*⁺), 139 (43), 123 (97), 105 (15), 95 (21), 91 (23), 81 (100), 79 (25), 77 (18), 67 (29), 55 (24), 41 (27).

 $(-)$ -(IR)-2,2,3,4-Tetramethylcyclopent-3-ene-1-methanol ((-)-5). [α] $_{10}^{20} = -21.2$ (c = 1.14, CHCl₃). IR: 3270, 2900, 1480, 1360, 1000. 'H-NMR: 0.82 (3, 3 H); 1.05 **(s,** 3 H); 1.48 **(s,** 3 H); 1.59 **(s,** 3 H); 1.99 *(m,* 2 H); 2.30 *(m.* 47.6 **(s);** 39.3 *(t);* 27.2 *(4);* 19.9 (4); 14.1 *(4);* 9.1 *(4).* MS: 154 (25, *M+),* 139 (loo), 121 (97), 109 (29), 105 (32), 93 (33), 91 (22), 79 (21), 67 (23), 55 (18), 41 (36). 1 H); 3.62 *(dd, J* = 7.2, 10.8, 1 H); 3.78 *(dd, J* = 6.2, 10.8, 1 H). "C-NMR: 138.7 **(s);** 128.1 **(s);** 64.3 *(t);* 50.5 *(d);*

1.2. $(-)-2$ *and* $(-)-5$ *from* $(-)-4$. Alcohol $(-)-4$ (1 g, 6.5 mmol) was treated with LEDA as described in 1.1 for 8-10 min to afford a mixture (0.95 **g,** 95% yield) of **(-)-4** (2.5%), **(-)-2** (44%), *(-)-S* (52%0), and unknown components (1.5%; GC). After 15 h, the product distribution was **(-)-4** (l%), **(-)-2)** (2%), *(-)-S* (95%), and unknown components (2%; GC). Separation by prep. GC (5-m *Carbowax* column) gave pure **(-)-2** followed by *(-)-5. (-)-(I R,4S)-3,4,5,5-Tetramethylcyclopent-2-ene-I-methanol((-)-2).* [a]g = -49.9 *(c* = 1.2, CHCI,). IR: 3600, 3040, 1360, 1040. 'H-NMR: 0.82 **(s,** 3 H); 0.90 *(d, J* = 7.2, 3 H); 1.08 *(s,* 3 H); 1.68 *(d, J* = 1.4, 3 H); 2.1 I *(4.* $J = 7.2, 1 \text{ H}$); 2.36 (*m*, 1 H); 3.56 (*ABX, J* = 6, 11, *d* = 38, 2 H); 5.24 (br. *s*, 1 H). ¹³C-NMR: 145.3 (*s*); 123.3 (*d*); 63.8 *(t);* 57.8 *(d);* 53.3 *(d);* 43.3 **(s);** 30.6 *(4);* 18.3 *(4);* 15.2 *(4);* 13.6 *(4).* MS: 154(5, *M+),* 139 (7), 123 (loo), 105 **(8),** 95 (Il), 91 (13), 81 (67).

1.3 *LEDA Treatment of (-)-5.* Pure *(-)-S* (0.3 g, 1.95 mmol) was heated in a mixture of Li (0.3 g, 42.8 mmol) in ethylenediamine (5 ml) at 70° for 15 h *(Condition a)*. \overline{GC} : no formation of $(-)$ -1, $(-)$ -2, $(-)$ -3, or $(-)$ -4 $(\overline{GC}$ limits *ca.* 0.5%).

2. BF_3 . Et₂O-Catalysed Isomerisation of $(-)$ -3 and $(-)$ -4 to $(-)$ -5. A 35:65 mixture $(-)$ -3/ $(-)$ -4 (1 g, 6.5) mmol) in Et₂O (10 ml) was stirred with BF₃. Et₂O (0.15 ml) overnight at r.t. *(Condition b)*. The soln. was washed with brine until neutral, dried (Na₂SO₄), evaporated, and purified by bulb-to-bulb distillation (oven temp. 130°/4 Torr) to yield a mixture (0.8 g, 80%) of **(-)-3** (0.1 %), **(-)-4** (0.8%), (-)-1 (I%), **(-)-2** (I%), **(-)-S** (95%), and known components *(ca.* 2.1%; GC) as a colourless oil. Purified $(-)$ -5 $([\alpha]]_D^{20} = -21$ *(c =* 1.95, CHCl₃)) was spectrally identical with an authentic sample *(vide supra).*

3. *Decarbonylation of (+)-Campholenal* **((+)-ii)** *to (-)-(4S)-1,4,5.S-Tetramethylcyclopent-l-ene* ((-)-6). Heating of $(+)$ -ii (500 g, 3.29 mol) together with 5% Pd/C (2.5 g) at 180-200° (oil bath) in a *Vigreux* distillation apparatus under stirring resulted in the continuous formation and distillation of **(-)-6** (313 g, 77%). Colourless oil. $[\alpha]_D^{20} = -0.9$ (neat). B.p. 126^o/760 Torr. GC purity: *ca.* 90%. IR: 3030, 2950, 1450, 1010, 790. ¹H-NMR: 0.75 (s, 3 H); 0.93 *(d, J* = 7.2, 3 H); 0.95 **(s,** 3 H); 1.61 (br. s, 3 H); 1.84 *(m,* 2 H); 2.25 *(m,* 1 H); 5.22 (br. s, **1** H). I3C-NMR: 148.5 **(s);** 122.1 *(d);* 46.8 **(s);** 44.8 *(d);* 37.8 *(t);* 25.7 *(4);* 19.5 *(4);* 14.4 *(4);* 12.8 *(4).* MS: 124 (15, *M+),* 109 (loo), 91 (14), 79 (19), 67 (30), 55 (6).

4. Prins-Blomquist *Reaction of (-)*-6: $(+)$ -5a, $(+)$ -7a, and $(+)$ -8. BF_3 ·Et₂O (5 ml) was added dropwise at 0° to a stirred mixture of (-)-6 (250 g, 2.02 mol), paraformaldehyde (72 g, 2.4 mol), Ac₂O (280 ml), and **2,6-di(tert-butyl)-4-methyIphenol** (0.5 g) in CH,CI, (1.5 1). The mixture was stirred overnight at r.t. and then poured onto brine, and the org. phase was washed with sat. aq. NaHCO3 and NaCl soln., dried (Na₂SO₄), and evaporated. GC: < 10% of (-)-6, 14% of (+)-8, 60% of (+)-7a, 9% of (+)-5, and 7-10% unknown. Distillation of the crude oil (32-100°/7 Torr) afforded a colourless oil (245 g). Fractional distillation using a 20-cm column packed with stainless steel helices at 0.5 Torr gave 50 g of a head fraction $((-)-6 \text{ and } (+)-8)$; b.p. $\leq 50^{\circ}$) and 178 g of (+)-7a/(+)-5a 9:l (b.p. 50'-57"; 45% yield). Separation by prep. GC (5-m Carbowax column) afforded pure samples of (+)-5a, (+)-7a, and **(+)-8.**

 $(+)$ -(1S)-(2,2,3,4-Tetramethylcyclopent-3-enyl)methyl Acetate ((+)-5a). $[\alpha]_{0}^{20}$ = +0.82 (neat.). IR: 2900, 1730, 1440, 1360, 1230, 1020. 'H-NMR: 0.82 **(s, 3** H); 1.05 (s, **3** H); 1.49 (s, **3** H); 1.59 (s, **3** H); 1.98 *(m,* 1 H); 2.06 (d); **39.2** (t); 27.0 *(4);* 21.0 *(4);* 19.9 *(4);* 14.1 *(4);* 9.2 *(4).* MS: 196 (2, *M'),* 136 (17), 121 (loo), 105 (15), 93 (17), 79 $(s, 3 H)$; 1.92 $(m, 1 H)$; 2.25 $(m, 1 H)$; 4.13 $(m, 2 H)$. ¹³C-NMR: 171.3 (s) ; 138.5 (s) ; 127.9 (s) ; 65.9 (t) ; 47.7 (s) ; 46.8 (81~67 **(3~** *55* (4), 43 (23).

 $(+)$ -(1S,4S)-(3,3,4-Trimethyl-2-methylidenecyclopentyl)methyl Acetate ((+)-7a). $[\alpha]_D^{20} = +5.8$ (c = 3.42, CHC1,). IR: 2900, 1720, 1450, 1360, 1210, 1020, **880.** 'H-NMR: 0.84 **(s, 3** H); 0.87 (d, *J* = 6.8, **3** H); 1.03 (s, **3** H); 1.52(m, 1 H); 1.70(m,2H);2.06(s, **3** H);2.88(m, 1 H); 3.91 (dd,J = 9, 10.8, 1 H);4.05(dd,J = 5.4,10.8,1 H);4.90 *(m, 2 H).* ¹³C-NMR: 171.0 *(s)*; 162.1 *(s)*; 105.5 *(t)*; 68.0 *(t)*; 44.9 *(s)*; 42.1 *(d)*; 40.8 *(d)*; 34.2 *(t)*; 27.0 *(q)*; 23.3 *(q)*; 21.0 (y); 14.1 *(4).* MS: 196 (0, *M+),* 151 (l), 136 (23), 121 (IOO), 107 (45),93 (37), 79 (17), 43 (47).

 $(+)$ -(1 **S**,6S)-6,7,8-Trimethyl-3-oxahicyclo[4.3.0]non-7-ene **((+)-8).** $[\alpha]_D^{20} = +3.7$ (c = 2.27, CHCl₃). IR: 2800, 1440, 1110. ¹H-NMR: 0.96 (t, J = 3.6, 1 H); 0.98 (s, 3 H); 1.48 (s, 3 H); 1.56 (m, 1 H); 1.61 (s, 3 H); 1.80 (m, 2 H); 2.69 (m. 1 H); 3.28 (dd, *J* = 7.2, 16.2, 1 H); **3.38** (m, 1 H); 3.59 (m, 1 H); 3.69 (dd, *J* = 3.6, 10.8, 1 H). I3C-NMR: 136.9 **(s);** 129.7 **(s);** 68.6 (t); 64.7 (t); 45.9 **(s);** 43 *(d);* 38.2 (t); 33.6 (t); 24.6 *(4);* 14.3 *(4);* 9.4 *(4).* MS: 166 (47, *M+),* 151 (49, 133 (15), 121 **(XX),** 107 (IOO), 96 (22), 93 (69), 79 (30), 67 (17), 53 (13), 41 (35).

5. BF₃. *Et₃O-Treatment of (+)-7a.* BF₃. Et₂O (10 ml) was added dropwise at r.t. to a stirred soln. of (+)-7a (120 g, 0.61 mol) in toluene (1 1) and then stirred overnight at r.t. The black mixture was poured onto brine, washed with sat. aq. NaHCO₃ and NaCl soln., dried (Na_2SO_4) , and evaporated. Distillation afforded (+)-5a as a colourless oil (87.7 g, 73 %). **B.p.** 53-57"/0.3 Torr.

6. LiAIH, Reduction *of* (+)-5a and (+)-7a to *(+)-5* and *(+)-I,* resp. A soh. of (+)-5a or (+)-7a *(5* g, 25 mmol) in dry Et₂O (30 ml) was added dropwise to a stirred suspension of LiAlH₄ (0.722 g, 19 mmol) in dry Et₂O (30 ml). During the addition, the temp. rose to *35".* The mixture was stirred for 30 min and then cooled to O"(ice-bath). **H20** (0.722 ml), NaOH **(15%,** 0.722 ml), and **H20** (2.17 ml) were successively added under vigourous stirring. The mixture was stirred for further 30 min and filtered and the filtrate evaporated. Bulb-to-bulb distillation (oven temp. **130"/3** Torr) afforded *(+)-5* (3.34 g, 85%) or (+)-7 (3.8 g, 97%) as colourless oils.

 $(+)$ -(IS)-2,2,3,4-Tetramethylcyclopent-3-ene-1-methanol $((+)$ -5). [α] $_{10}^{20}$ = +3.5 $(c = 1.4, CHCl₁)$. IR: 3300, 2900, 1440, 1020. ¹H-NMR: 0.83(s, 3H); 1.05(s, 3H); 4.90(s, 3H); 1.60(s, 3H); 1.99(m, 2H); 2.31(m, 1H); 3.62 *(dd,J=7.2,10.8,1H);3.78(dd,J=5.4,* 10.8,1H).MS: 154(25,M+), **139(100),12(97),109(30),105(34),93(33).**

 $(+)$ -(IS,4S)-3,3,4-Trimethyl-2-methylidenecyclopentane-I-methanol ((+)-7). [a] $^{20}_{0} = +5.9$ (c = 3.2, CHCl₃). IR: 3300, 2900, 1640, 1450, 1020, 880. 'H-NMR: *0.85* **(s, 3** H); 0.89 *(d, J* = 3.6, **3** H); 1.04 (s, **3** H); 1.54 (m, 1 H); 1.72 *(m,* 2 H); 2.75 (m, 1 H); 3.56 (d, *J* = 6.3, 2 H); 4.87 *(d, J* = 2.2, 1 H); 4.93 (d, *J* = 2.2, 1 H). I3C-NMR: 163.0 **(s);** 104.8 *(1);* 66.1 **(s);** 44.9 (d); 42.5 (d); 34.1 *(1);* 26.9 *(4);* 23.4 *(4);* 14.2 *(4).* MS: 154 **(3,** *M+).* 136(17), 121 (IOO), 107 **(39, 93** (37), **81 (XO),** 67 (43), *55* **(32),** 41 (24).

REFERENCES

- [I] T. Eisner, **J.** Meinwald, Psyche **1982,** 8Y, 357; T.Eisner, M. Deyrup, R. Jacobs, **J.** Meinwald, *J.* Chem. Ecol. 1986,12, 1407; **J.** Meinwald, *Ann. N. Y.* Acad. Sci. 1986,471, 197.
- [2] a) B. Roach, T. Eisner, **J.** Meinwald, *J.* Org. *Chem.* 1990,50,4047; b) R. T. Jacobs, G. **J.** Feutrill, J. Meinwald, ibid. 1990, 50, 4051.
- **[3] A.** F. Thomas, *Helv.* Chim. Acta 1972,55, 815.
- [4] W. Oppolzer, P. Schneider, *Helv.* Chim. *Actu* 1986,69, 1817; B.M. Trost, R. Braslau, Tetruhedron Lett. 1988, 29, 1231.
- *[5]* K. H. Schulte-Eke, H. Pamingle, *Helv.* Chim. Acta 1989, 72, 1158.
- [6] Takeo Kurata, Yukugaku **1981,30,** 562 *(CA:* 96,202790); G. Kruppa, H. Suhr, Liebigs. Ann. Chem. 1980,5, 677.
- [7] L. Reggel, **S.** Friedman, **J.** Wender, *J.* Org. Chem. 1958,23, 1136; **B.** N. Joski, R. Seshadri, K. K. Chakravarti, S.C. Bhattacharyya, Tetrahedron 1964, 20, 2911.
- **[8]** A. T. Blomquist, R. J. Himics, *J.* Org. Chem. 1968,33, 1156.